COMPARATIVE ANALYSIS OF HEAT BALANCES FOR K-210-130-1 AND 13 CK 240 TURBINES

ION DOSA¹

Abstract: Replacing and older equipment must be carried out as a result of an exhaustive technical and economical analysis. Energy efficiency is a major aspect, since energy represents a major part of operational cost for each company. This paper present the comparative analysis of heat balances of two turbines, the older K-210-130-1 and the most recent 13 CK 240 turbine, in order to emphasize the opportunity of replacing the remaining turbines with new ones.

Key words: steam turbine, heat balance, specific consumption.

1. INTRODUCTION

An important part of a power plant is the turbine which converts the thermal energy of steam into kinetic energy of steam flow and further transformed into mechanical work of turbine shaft rotation. Therefore improving the turbine efficiency will increase the amount of produced electric power.

The main advantages of steam turbines, compared with other prime movers, consists in their high speed, small size and the possibility to construct turbines of very high power ratings per single unit.

Both turbines presented in this paper are multistage condensing steam turbines for high steam conditions.

The K-210-130-1 turbine (fig. 1), is a one shaft, two-flow rotor, three-cylinder steam turbine (high-pressure cylinder, medium-pressure cylinder and low-pressure cylinder), with steam reheating after the high-pressure cylinder. The steam turbine is rated 210 MW, 3000 rot \cdot min⁻¹ [1]. The turbine is designed to operate with throttle pressure of 130 bar, and a temperature of 545 °C, the high-pressure cylinder steam is reheated to 545 °C at a pressure of 24.4 bar. The turbine exhaust pressure is 0.035 ata.

The 13 CK 240 and K-210-130-1 turbines are comparable; one difference resides in the construction of high-pressure and medium-pressure cylinder.

¹ Lecturer, eng. Ph.D. at University of Petroşani, i_dosa@hotmail.com

Fig. 1. Sectional view of K-210-130-1 turbine [1]

The inner rollers have a row of additional nozzles placed on double-cases, and the rotor has an extra row of rotor blades.

Another difference is in the shape of the nozzles of the high-pressure cylinder inlet (primary) steam, and for the reheated (secondary) steam at the medium-pressure cylinder inlet, in addition there are differences in the placement of control and stop valves, placed on the either side of turbine. As a result, the construction and operation principle of the latter, therefore for the entire turbine control system has changed.

The 13 CK 240 turbine is rated 235.022 MW, 3000 rot min⁻¹. The turbine is designed to operate with throttle pressure of 127.5 bar, and a temperature of 545 °C, the high-pressure cylinder steam is reheated to 545 °C at a pressure of 23.83 bar. The turbine exhaust pressure is 0.035 ata.

The steam required to operate the turbines is provided in both cases by the Pp-55 boiler, with $Dn=640 \text{ t}\cdot\text{h}^{-1}$ (2x320) rate of output steam flow at 130/127.5 bar pressure and a temperature of 545 °C, and reheated steam with $Dn=564 \text{ t}\cdot\text{h}^{-1}$ rate of steam flow, at 24.4/23.83 bar pressure and a temperature of 545 °C, in matching thermal scheme.

The turbines are designed to provide steam to water heaters from which the hot water is directed into the district-heating system.

2. HEAT BALANCE CALCULATION OF STEAM TUBINES

Internal power developed by steam in a multi-stage turbine of different flow rates, can be written as a sum of internal powers in these stages [2]:

$$P_i = \sum_{j=1}^n D_j \cdot H_{i,j}, \quad kW$$
⁽¹⁾

where: j is the index of summation; D_j flow rate of expanded steam in stage j, in kg·s⁻¹; $H_{i,j} = i_{1j} - i_{2rj}$, internal expansion in stage j, in kJ·kg⁻¹; i_{1j} and i_{2rj} effective enthalpy of

steam at inlet and outlet of stage, in $kJ \cdot kg^{-1}$.

The adiabatic expansion of steam is $H_{tj} = i_{lj} - i_{2tj}$ in $kJ \cdot kg^{-1}$, where i_{2tj} is theoretical enthalpy of steam at outlet in $kJ \cdot kg^{-1}$, as a result the internal efficiency is:

$$\eta_{ij} = \frac{H_{ij}}{H_{ij}} = \frac{i_{1j} - i_{2ij}}{i_{1j} - i_{2ij}}$$
(2)

multi-stage steam turbine with no reheating [3]

In the same way can be defined the equivalent internal efficiency for specific bodies on the entire turbine (without reheating).

For turbines, turbine bodies or sections for which the entire expansion of steam is in the superheated range, enthalpies i_1 and i_{2r} can be calculated by measurements of pressure and temperature p_1 , T_1 at inlet and p_2 , T_2 at outlet.

Theoretical expansion can be found using diagrams or tables with thermodynamic properties of steam, and as a result the internal efficiency can be calculated directly using eq. (2).

The thermal power P_{ta} at turbine inlet can be found using [2][5]:

$$P_{ta} = D_0 \cdot i_{r0} + D_i \cdot \left(i_{rp6} - i_{r0} \right)$$
(3)

where: D_0 is the steam flow rate at inlet, in kg·s⁻¹; i_{r0} the actual enthalpy at inlet in kJ·kg⁻¹; D_i reheated steam flow rate, in kg·s⁻¹; i_{rp6} actual enthalpy at bleeder no.6 in kJ·kg⁻¹.

Generator loss and its efficiency can result from the energy balance of generator cooler:

$$\Delta P_{gen} = D_{rg} \cdot c_p \cdot \left(t_{r2g} - t_{r1} \right) \quad kW \tag{4}$$

where D_{rg} is the cooling water flow rate in kg·s⁻¹; t_{r2g} water temperature at outlet of generator cooler in °C; t_{r1} water temperature at inlet of generator cooler in °C.

Mechanical loss can be calculated using:

$$\Delta P_m = D_{ru} \cdot c_p \cdot \left(t_{r2u} - t_{r1} \right) \quad kW \tag{5}$$

where D_{ru} is the cooling water flow rate of oil cooler in kg·s⁻¹, t_{r2u} water temperature at outlet of oil cooler in °C; t_{r1} water temperature at inlet of oil cooler in °C.

Lost thermal power with condenser cooling:

$$\Delta P_{cd} = D_{rc} \cdot c_p \cdot \left(t_{r2c} - t_{r1} \right) \quad kW \tag{6}$$

where D_{rc} is the cooling water flow rate in condenser kg·s⁻¹, t_{r2c} cooling water temperature at outlet of condenser in °C; t_{r1} cooling water temperature at inlet of condenser in °C.

Other useful formulas can be found in [2][3][4][5][6][7][8][9].

3. RESULTS

As stated above, turbines can operate in condensing and extraction system, when the extracted steam is used in heat exchangers providing hot water for district heating.

In effective working conditions is difficult to balance the load of district heating to ensure the same load for both turbines. As a result, comparison of energy balances for turbines working in different conditions can't be done.

In order to overcome these difficulties, the energy balance will be calculated at rated parameters for operation in condensing system for both turbines.

The balance outline includes: the turbine, the generator, the condenser, the oil cooler, the generator cooler and the regenerative feedwater heating arrangement.

In Table 1 data for calculating the heat balance of K-210-130-1 and 13 CK 240 turbines can be found. The turbines are working at rated parameters, in condensation system.

Item	Description	U.M.	Value		
			K-210-130-1	13 CK 240	
1.	Rated power P _g	MW	210	235.022	
2.	Throttle pressure p ₀	bar	130	127.5	
3.	Throttle temperature t ₀	°C	545	545	
4.	Steam flow rate D ₀	kg⋅s ⁻¹	176,11	177.778	
5.	Intermediate steam pressure p _i	bar	24.4	23.8	
6.	Intermediate steam temperature t _i	°C	545	545	
7.	Intermediate steam flow rate D _i	kg⋅s ⁻¹	160.27	156.678	
8.	Steam pressure at bleeder no. 7	bar	41	38.06	
9.	Steam temperature at bleeder no. 7	°C	390	365.5	
10.	Steam flow rate at bleeder no. 7	kg⋅s ⁻¹	5.83	6.177	
11.	Steam pressure at bleeder no. 6	bar	28.9	28.91	
12.	Steam temperature at bleeder no. 6	°C	350	326.4	
13.	Steam flow rate at bleeder no. 6	kg⋅s ⁻¹	7.22	13.74	

Table 1 Data for K-210-130-1 and 13 CK 240 turbines in condensation system

14.	Steam pressure at bleeder no. 5	bar	12.5	12.72
15.	Steam temperature at bleeder no. 5	°C	460	445.5
16.	Steam flow rate at bleeder no. 5	kg⋅s ⁻¹	5.0	5.842
17.	Steam pressure at bleeder no. 4	bar	6.5	6.965
18.	Steam temperature at bleeder no. 4	°C	380	359.1
19.	Steam flow rate at bleeder no. 4	kg⋅s ⁻¹	5.83	7.97
20.	Steam pressure at bleeder no. 3	bar	2.8	3.025
21.	Steam temperature at bleeder no. 3	°C	280	253.7
22.	Steam flow rate at bleeder no. 3	kg⋅s ⁻¹	7.5	6.404
23.	Steam pressure at bleeder no. 2	bar	1.3	1.345
24.	Steam temperature at bleeder no. 2	°C	200	167.8
25.	Steam flow rate at bleeder no. 2	kg⋅s ⁻¹	11.67	11.427
26.	Steam pressure at bleeder no. 1	bar	0.26	0.183
27.	Steam temperature at bleeder no. 1	°C	80	60
28.	Steam flow rate at bleeder no. 1	kg⋅s ⁻¹	11.39	6.296
29.	Condenser temperature t _c	°C	30	65
30.	Condenser pressure p _c	bar	0.035	0.034
31.	Temperature of main condensate t _{cd}	°C	27	26.2
32.	Water temperature at deaerator outlet t _a	°C	158	160
33.	Water pressure at deaerator outlet p _a	bar	6	6
34.	Water flow rate at regenerating boiler D _a	kg·s ⁻¹	183.33	191.6
35.	Condenser cooling water flow rate D _{rc}	kg·s ⁻¹	6944.44	6944.44
36.	Cold water temperature t _{r1}	°C	17.6	18.1
37.	Water temperature at condenser outlet t_{r2c}	°C	28.1	28
38.	Generator cooling water flow rate D _{rg}	kg⋅s ⁻¹	97.22	97.22
39.	Water temperature at generator cooler outlet t_{r2g}	°C	38.3	39.9
40.	Oil cooler water flow rate D _{ru}	kg⋅s ⁻¹	108.33	108.33
41.	Water temperature at oil cooler outlet t _{r2u}	°C	37	36.8

After performing calculus, results are presented in Table 2 along with efficiency indicators. Data regarding the heat balance is found in Table 3 for K-210-130-1 turbine and Table 4 for 13 CK 240 turbine.

Item	Description	U.M.	Value	
			K-210-130-1	13 CK 240
1.	Theoretical expansion in high-pressure body	kJ·kg ⁻¹	447.55	440.29
	H _{tip}			
2.	Internal expansion in high-pressure body H _{iip}	kJ·kg ⁻¹	338.55	399.5
3.	Internal efficiency in high-pressure body η_{iip}	%	75.65	90.74
4.	Theoretical expansion in medium-pressure	kJ·kg ⁻¹	824.19	807.22
	body H _{tmp}			
5.	Internal expansion in medium-pressure body	kJ·kg ⁻¹	688.99	750.05
	H _{imp}			

Table 2 Calculated values and efficiency indicators for K-210-130-1 and 13 CK 240 turbines

Dosa.	I.
\mathbf{L} o \mathcal{Q} \mathcal{O} \mathcal{Q}	

-	x <i>i a i i i i i i</i>		0.0.10	
6.	Internal efficiency in medium-pressure body	%	83.60	92.92
	η_{imp}			
7.	Theoretical expansion in low-pressure body	kJ∙kg⁻¹	486.40	513.24
	H _{tjp}			
8.	Internal expansion in low-pressure body H _{ijp}	kJ∙kg⁻¹	449.96	503.02
9.	Internal efficiency in low-pressure body η_{ijp}	%	92.50	98.00
10.	Theoretical expansion in turbine H _h	kJ∙kg ⁻¹	1736.55	1713.85
11.	Generator efficiency η_g	%	96.14	96.36
12.	Mechanical efficiency η_m	%	99.99	99.99
13.	Equivalent internal efficiency of expansion η_i	%	85.08	96.42
14.	Thermal efficiency of cycle η_t	%	42.88	46.25
15.	Total effective efficiency η_{ea}	%	39.63	43.07
16.	Gross heat consumption q _{bc}	kJ∙kJ ⁻¹	3.125	2.875
17.	Consumption of conventional fuel b _{bc}	kg c.c.∙	0.384	0.353
		kWh^{-1}		
18.	Energy of steam at turbine inlet	kJ∙kg ⁻¹	1192.44	1322

Table 3 Summary of actual heat balance for K-210-130-1 turbine

INPUT			OUTPUT				
Description	MW	%	Description	MW	%		
			USEFUL POWER				
			Generator power output Pg	210.000	32.20		
			Recycled power by feedwater P _{cdr}	122.244	% 32.20 18.74 50.94 1.35 1.29 46.81 -0.39 49.06 100		
Input thermal power of			t thermal		TOTAL USEFUL	332.244	50.94
	652.166	100	Mechanical loss ΔP_m	8.800	1.35		
steam P _{ta}			Generator loss ΔP_g	8.425	1.29		
			Condenser loss ΔP_{cd}	305.287	46.81		
			Unaccounted loss ΔP_{div}	-2.59	-0.39		
			TOTAL LOST	319.922	49.06		
TOTAL	652.166	100	TOTAL OUTPUT	652.166	100		
INPUT							

Based on Table 3, the Sankey diagram of the actual heat balance for K-210-130-1 turbine was built (fig. 3).

Looking at Table 3 and Sankey diagram built on this basis we can draw the following conclusions:

- Steam pressure value is rated, therefore will not reduce the efficiency of the cycle and will not increase the consumption of steam and heat;

- Condenser is working well, fits the parameters, thus condensing pressure is good, and although is the main source of losses (46.81%), they cannot be reduced by other means than by reducing the flow of steam passing through the condenser, i.e. cogeneration.

- Mechanical efficiency, generator efficiency and equivalent internal efficiency of the entire turbine and for different turbine sections is within normal limits for

26

turbines in this category of power.

In conclusion, if the turbine is functioning at rated parameters, improving its energy efficiency can be achieved only by constructive changes. This conclusion can be drawn also from the fact that the unit is used for district heating in the winter but at building was not equipped with adjustable extractions because it was designed to operate in condensing system.

Input thermal power of steam P_{ta} 652.166 MW

Generator power output P_o 210.000 MW (32.20%)

Fig.3. Sankey diagram of actual heat balance for K-210-130-1 turbine (condensation)

Table 4 Summary of actual heat balance for 13 CK 240 turbine

INPUT			OUTPUT				
Description	MW	%	Description	MW	%		
			USEFUL POWER				
			Generator power output P _g	235.022	35.53		
			Recycled power by feedwater P _{cdr}	115.822	17.51		
			TOTAL USEFUL	350.844	53.04		
Input thermal	661.448	100	Mechanical loss ΔP_m	8.481	1.28		
power of steam r _{ta}			Generator loss ΔP_g	8.872	1.34		
			Condenser loss ΔP_{cd}	287.841	43.52		
			Unaccounted loss ΔP_{div}	5.410	0.82		
			TOTAL LOST	310.604	46.96		
TOTAL INPUT	661.448	100	TOTAL OUTPUT	661.448	100		

Looking at Table 4 and Sankey diagram constructed on this basis we can draw the following conclusions:

- Throttle steam pressure is rated, therefore will not reduce the efficiency of the cycle and will not increase the consumption of steam and heat. Although throttle pressure is lower than in the case of K-210-130-1 turbine more power is obtained at the generator terminals, thus energy is used more judicious in 13 CK 240 steam turbine, of which construction is improved (extra stages and adjustable extraction);

- Condenser is working well, fits the parameters, thus condensing pressure is good, and although is the main source of losses (43.52%), they fell with 3.29% compared with the previous case, because in this case condenser temperature is lower;

Input thermal power of steam P_{ta} 661.448 MW (100%)

Generator power output Pg 235.022 MW (35.53%)

Fig. 4. Sankey diagram for actual heat balance of 13 CK 240 turbine (condensation)

- Mechanical efficiency, generator efficiency and equivalent internal efficiency of the entire turbine and for different turbine sections is within normal limits for turbines in this category of power.

- Energy efficiency of the turbine is greater, with available power output of 53.04% compared to 50.94% available useful power for K-210-13-1 turbine.

The 13 CK 240 turbine is working more efficiently then K-210-13-1 turbine in condensation system, and a comparison in district-heating system is not probative since K-210-130-1 turbine wasn't natively built for working in district heating system.

As known cogeneration improves overall efficiency of a thermal-electric plant, as a result, a heat balance for 13 CK 240 turbine working in district-heating system must be carried out.

Building the heat-balance at rated parameters in district-heating system was based on data measured at turbine testing, which are presented in Table 5.

The heat-balance outline includes: actual turbine, driven electric generator, condenser, oil cooler, generator cooler; deaerator for supplement water and condensate return from district-heating, deaerator for main condensate, regenerative preheating arrangement of condensate.

Item	Description	U.M.	Value
1.	Rated power P _g	MW	191.121
2.	Throttle pressure p_0	bar	127.5
3.	Throttle temperature t ₀	°C	545
4.	Steam flow rate D ₀	kg·s ⁻¹	177.778
5.	Intermediate steam pressure p _i	bar	23.64
6.	Intermediate steam temperature t _i	°C	545
7.	Intermediate steam flow rate D _i	kg⋅s ⁻¹	156.678
8.	Steam pressure at bleeder no. 7	bar	36.07
9.	Steam temperature at bleeder no. 7	°C	360
10.	Steam flow rate at bleeder no. 7	kg⋅s ⁻¹	6.977
11.	Steam pressure at bleeder no. 6	bar	28.02
12.	Steam temperature at bleeder no. 6	°C	320.4
13.	Steam flow rate at bleeder no. 6	kg⋅s ⁻¹	13.343
14.	Steam pressure at bleeder no. 5	bar	12.13
15.	Steam temperature at bleeder no. 5	°C	443
16.	Steam flow rate at bleeder no. 5	kg⋅s ⁻¹	5.178
17.	Steam pressure at bleeder no. 4	bar	6.312
18.	Steam temperature at bleeder no. 4	°C	350
19.	Steam flow rate at bleeder no. 4	kg⋅s ⁻¹	7.742
20.	Steam pressure at bleeder no. 3	bar	2.85
21.	Steam temperature at bleeder no. 3	°C	251
22.	Steam flow rate at bleeder no. 3	kg⋅s ⁻¹	7.914
23.	Steam pressure at bleeder no. 2	bar	1.69
24.	Steam temperature at bleeder no. 2	°C	195
25.	Steam flow rate at bleeder no. 2	kg⋅s ⁻¹	8.189
26.	Steam pressure at bleeder no. 1	bar	0.086
27.	Steam temperature at bleeder no. 1	°C	50
28.	Steam flow rate at bleeder no. 1	kg·s ⁻¹	5.0246
29.	Condenser temperature t _c	°C	50
30.	Condenser pressure p _c	bar	0.024
31.	Temperature of main condensate t _{cd}	°C	20.6
32.	Water temperature at deaerator outlet t _a	°C	164

Table 5 Data for 13 CK 240 turbine in district-heating system

Do<u>șa, I.</u>

33.	Water pressure at deaerator outlet p _a	bar	6
34.	Water flow rate at regenerating boiler D _a	kg⋅s ⁻¹	191.6
35.	Condenser cooling water flow rate D _{rc}	kg⋅s ⁻¹	6944.44
36.	Cold water temperature t _{r1}	°C	18.1
37.	Water temperature at condenser outlet t _{r2c}	°C	22.6
38.	Generator cooling water flow rate D _{rg}	kg⋅s ⁻¹	97.22
39.	Water temperature at generator cooler outlet t _{r2g}	°C	39.9
40.	Oil cooler water flow rate D _{ru}	kg⋅s ⁻¹	108.33
41.	Water temperature at oil cooler outlet $t_{r_{2u}}$	°C	36.8

Calculated data in district-heating system, at rated parameters are presented in Table 6.

Item	Description	U.M.	Value
1.	Theoretical expansion in high-pressure body H _{tip}	kJ∙kg ⁻¹	447.05
2.	Internal expansion in high-pressure body H _{iip}	kJ∙kg ⁻¹	409.9
3.	Internal efficiency in high-pressure body η_{iip}	%	91.69
4.	Theoretical expansion in medium-pressure body H _{tmp}	kJ∙kg ⁻¹	754.15
5.	Internal expansion in medium-pressure body H _{imp}	kJ∙kg ⁻¹	702.05
6.	Internal efficiency in medium-pressure body η_{imp}	%	93.09
7.	Theoretical expansion in low-pressure body H _{tip}	kJ∙kg ⁻¹	521.19
8.	Internal expansion in low-pressure body H _{ijp}	kJ∙kg ⁻¹	507.21
9.	Internal efficiency in low-pressure body η_{ijp}	%	97.32
10.	Theoretical expansion in turbine H _h	kJ∙kg ⁻¹	1713.85
11.	Generator efficiency η_g	%	95.56
12.	Mechanical efficiency η_m	%	99.99
13.	Equivalent internal efficiency of expansion η_i	%	94.47
14.	Thermal efficiency of cycle η_t	%	60.99
15.	Total effective efficiency η_{ea}	%	55.92
16.	Gross heat consumption q _{bc}	kJ∙kJ ⁻¹	2.215
17.	Consumption of conventional fuel b _{bc}	kg c.c.∙	0.272
		kWh ⁻¹	
18.	Energy of steam at turbine inlet	kJ·kg ⁻¹	1075.05

Table 6 Calculated values and efficiency indicators for 13 CK 240 turbine

Results required for building the actual heat balance of turbine 13 CK 240 were summarized in Table 7, and Sankey diagram shown in Fig. 5.

Table 7 Summary of actual heat balance	e for 13 CK 240 turbine (district-heating)
--	--

INPUT			OUTPUT		
Description	MW	%	Description	MW	%
Innut themes			USEFUL POWER		
input thermal	662 226	07 75	Generator output P _g	191.121	28.17
P_{ta}	005.220	91.15	Recycled power by feedwater P _{cdr}	115.822	17.07
			Extraction thermal power P _{ta2}	220.834	32.55

30

Generator output power P_g 191,121 MW (28,17 %)

Useful output power 527,777 MW (77,79 %)

Fig. 5. Sankey diagram of heat balance for 13 CK 240 turbine (district-heating)

Heat balance analysis of turbine 13 CK 240 highlights the following:

- Using cogeneration, useful heat output reaches 77.79% of input thermal power, which is a good value in terms of energy use;

- The mechanical and generator loss remained relatively constant;

- Condenser loss was halved, because here comes a lower steam flow, and therefore waste heat from steam to cooling water is lower. Steam does not reach the condenser, is useful and is used for heating. As a result, generator output power is lower since part of the steam is no longer expanding in turbine.

Advantages of cogeneration are reflected in the data in Table 8, which noted:

- Internal efficiency in high, medium and low pressure cylinders are close to those in condensation system, but internal equivalent efficiency felt with 1.95%.

- Thermal efficiency of cycle η_t is 14.74 % higher, reaching 60.99 %, within usual limits as stated in literature for cogeneration.

- Actual efficiency of unit η_{ea} increased by 12.85 %, and the gross heat q_{bc} and fuel consumption b_{bc} decreased, with 0.66 kJ·kJ⁻¹ for q_{bc} reaching 2.215 kJ·kJ⁻¹ and b_{bc} reaching 0.272 kg c.c.·kWh⁻¹, resulting substantial savings in heating period, that could reach to 0.081 x 191,121 x 180 days x 24 hours = 66877.06 t c.c., if we consider six months of heating.

4. COMPARISON OF TUBINES

Following the analysis of actual balances, the K-210-130-1 and 13 CK 240 turbines can be compared to choose the best value energy point of view turbine.

Comparisons will be made both on energy indicators (Table 9) obtained by calculations and by comparing the heat balance for the two turbines (Table 3 and Table 4) in condensing system.

Item	Description	U.M.	Value	
			K-210-130-1	13 CK 240
1	Theoretical expansion in high-pressure body H _{tip}	kJ⋅kg ⁻¹	440.29	447.55
2	Internal expansion in high-pressure body H _{iip}	kJ·kg ⁻¹	399.5	338.55
3	Internal efficiency in high-pressure body η_{iip}	%	90.74	75.65
4	Theoretical expansion in medium-pressure body	kJ·kg ⁻¹	807.22	824.19
	H _{tmp}			
5	Internal expansion in medium-pressure body H _{imp}	kJ⋅kg ⁻¹	750.05	688.99
6	Internal efficiency in medium-pressure body η_{imp}	%	92.92	83.60
7	Theoretical expansion in low-pressure body H _{tip}	kJ⋅kg ⁻¹	513.24	486.40
8	Internal expansion in low-pressure body H _{ijp}	kJ⋅kg ⁻¹	503.02	449.96
9	Internal efficiency in low-pressure body η_{ijp}	%	98.00	92.50
10	Theoretical expansion in turbine H _h	kJ⋅kg ⁻¹	1713.85	1736.55
11	Generator efficiency η_g	%	96.36	96.14
12	Mechanical efficiency η_m	%	99.99	99.99
13	Equivalent internal efficiency of expansion η_i	%	96.42	85.08
14	Thermal efficiency of cycle η_t	%	46.25	42.88
15	Total effective efficiency η_{ea}	%	43.07	39.63

Table 9	Comparison	of (energy	indicators
---------	------------	------	--------	------------

Item	Description	U.M.	Value	
			K-210-130-1	13 CK 240
16	Gross specific heat consumption q _{bc}	kJ⋅kJ ⁻¹	2.875	3.125
17	Specific consumption of conventional fuel b _{bc}	kg	0.353	0.384
		c.c.		
		kWh ⁻¹		
18	Specific energy of steam at turbine inlet	kJ·kg ⁻¹	1322	1192.44

Analyzing the data in Table 9 can draw the following conclusions:

- Although the theoretical expansion in the high pressure body has similar values for the two turbines, internal expansion is higher for 13 CK 240 turbine, therefore. The internal efficiency of high pressure body is higher with 15.09%. This is due to larger number stages in the high pressure body of 13 CK 240 turbine;

- In the medium pressure body the situation is the same, the efficiency of 13 CK 240 turbine is higher with 9.32%, and in the low pressure body is 5.5% higher;

- Generator and mechanical efficiency of turbines is fairly equal as expected that turbines are very similar in terms of construction and relatively close in terms of powers;

- Equivalent internal efficiency of expansion η_i of 13 CK 240 turbine is 11.34% higher since the turbine above has a better efficiency in every body;

- The thermal efficiency η_t of the turbine 13 CK 240 cycle is 3.37% higher and also the actual efficiency η_{ea} of unit is 3.44% higher.

- In terms of consumption 13 CK 240 turbine is more efficient. Gross heat consumption q_{bc} is lower with 0.25 kJ·kJ⁻¹ and specific fuel consumption of conventional fuel is 0.031 (kg c.c.)·kWh⁻¹ less, the resulting fuel economy per year is 63,822.57 t c.c. assuming that the turbine will operate a total of 8760 h·year⁻¹.

5. CONCLUSION

Comparison of heat balance for the two turbines emphasizes better efficiency of the turbine 13 CK 240 and the following categories will be highlighted:

- Generator power output $P_{\rm g}$ is 3.33% higher for 13 CK 240 turbine when compared to input steam thermal power.

- Recycled power by feedwater P_{cdr} is also lower by 1.23%.

- Condenser loss ΔP_{cd} is 3.29% lower for 13 CK 240 turbine.

In conclusion, the 13 CK 240 turbine is more energy efficient than K-210-130-1 turbine.

This result is because the 13 CK 240 turbine is the latest design with some improvements in terms of construction versus older turbine as described above.

If the K-210-130-1 turbine has bleeders, designed to operate in condensing system but adapted for district-heating by taking needed steam for heating from bleeders, 13 CK 240 has extractions designed from the start for combined heat and

power production.

Therefore, it can be concluded that it is desirable to use the turbine 13 CK 240 instead of K-210-120-1 in the thermal power plant, given the high energy features in condensing and district-heating system.

REFERENCES

- [1]. ***, Instrucțiuni tehnice de întreținere a turbinei K-210-130-1, 1967.
- [2]. Carabogdan. Gh. I., Alexe. Fl., Athanasovici. V., Badea. A., ş.a. Bilanţuri energetice. Probleme şi aplicaţii pentru ingineri. Editura Tehnică, Bucureşti, 1986.
- [3]. Shvets. I. T., Tolubinsky. V. I., Kirakovsky. N. F., Neduzhy. I. A., Sheludko. I. M., *Heat Engineering*. MIR Publishers, Moscow, 1975.
- [4]. Nagi. M.. Utilaje termice. Universitatea "Politehnica" din Timişoara. 1995.
- [5]. Popa. B.. Man. E.. Popa. M.. Termotehnică. agregate și instalații termice culegere de probleme. Editura Tehnică. București. 1979.
- [6]. Carabogdan. Gh.. Badea. A.. Leca. A.. Athanasovici. V.. Ionescu. L.. Instalații termice industriale culegere de probleme. vol.2. Editura Tehnică. București. 1983.
- [7]. Badea. A.. Echipamente și instalații termice. Editura Tehnică. București. 2003.
- [8]. Leca. A., Pop. M., Stan. N., ş.a., Procese și instalații termice în centrale nucleare electrice. Editura Didactică și Pedagogică. București. 1979.
- [9]. Berinde. T.. Ionașcu. T.. Resiga. R. ș.a. Întocmirea și analiza bilanțurilor energetice în industrie. Vol. II. Editura Tehnică, București, 1976.